Managing Fugitive Dust On Alaska’s Roads and Airports

Dave Barnes and Billy Connor
Alaska University Transportation Center
University of Alaska Fairbanks
Road Map

• Understanding fugitive dust
• Methods to manage dust
• Field Research
• Laboratory Research
• Applying Palliatives in Rural Alaska
Unpaved Roads in the US

- 1.3 million miles of unpaved road in US
- 97% located in rural areas
- Source of 10.5 million tons particulate matter <10μm (PM10)
Consider: 2-mile stretch of unpaved road, 20 vehicles/day, average speed = 30 mph.

Result: 10,920 lbs of dust (PM10) per month

(Roberts et al., 1975)
Impact of Loss of Particulate Matter from Unpaved Roads

- Degradation of road surface
- Driver safety
- Health and Quality of life
Health Issues

- Impacts children, elderly, and those with respiratory ailments the most
- Mortality rates increase 4.3% to 10% per 10 \(\mu \text{g m}^{-3} \) PM10
- PM2.5 may penetrate into the alveoli reducing transfer of oxygen
- 1 micron may enter the bloodstream
How Small are These Particles We Are Working With?

- **Heavy Dust**
- **Settling Dust**
- **Suspended Atmospheric Dust**
- **PM 10**
- **PM 2.5**

Particle Size (μm):
- 0.0001
- 0.001
- 0.01
- 0.1
- 1
- 10
- 100
- 1000
Really Small!

HUMAN HAIR
50-70 μm (microns) in diameter

PM$_{2.5}$
Combustion particles, organic compounds, metals, etc.
< 2.5 μm (microns) in diameter

PM$_{10}$
Dust, pollen, mold, etc.
< 10 μm (microns) in diameter

90 μm (microns) in diameter
FINE BEACH SAND

Image courtesy of the U.S. EPA
What Causes This?
We Need a Source of Dust
Next We Need a Mechanical Means of Lofting Particles into The Air
Moving Dust

- Advective Transport
- Turbulent Diffusion
- Settling
- Mechanical and Convective Lofting
Dust Settling
Settling time from a 2m loft

- 0.1 mm: ~3 sec
- 0.05 mm: ~11 sec
- 0.01 mm (PM10): ~4 minutes
- 0.0025 mm (PM2.5): ~1 hour
- 0.001 mm: 5.9 hours
Optical Haze
Methods to Manage Dust
Good Dust Management Starts with a Good Road
Using the Right Building Material is Critical
Too few fines causes washboarding
Too Many Fines Causes Muddy Roads
<table>
<thead>
<tr>
<th>Aggregate With No Fines</th>
<th>Aggregate With Sufficient Fines For Maximum Density</th>
<th>Aggregate With Great Amount Of Fines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grain-to-grain contact</td>
<td>Grain-to-grain contact with increased resistance against deformation</td>
<td>Grain-to-grain contact destroyed, aggregate “floating” in soil</td>
</tr>
<tr>
<td>Variable density</td>
<td>Increased to maximum density</td>
<td>Decreased density</td>
</tr>
<tr>
<td>Pervious</td>
<td>Low permeability</td>
<td>Low permeability</td>
</tr>
<tr>
<td>Non-frost susceptible</td>
<td>Frost susceptible</td>
<td>Frost susceptible</td>
</tr>
<tr>
<td>High stability if confined, low if unconfined</td>
<td>Relatively high stability in confined or unconfined conditions</td>
<td>Low stability and low strength</td>
</tr>
<tr>
<td>Not affected by adverse water conditions</td>
<td>Not greatly affected by adverse water conditions</td>
<td>Greatly affected by adverse water conditions</td>
</tr>
<tr>
<td>Difficult to compact</td>
<td>Moderately difficult to compact</td>
<td>Not difficult to compact</td>
</tr>
<tr>
<td>Ravels easily</td>
<td>Good road performance</td>
<td>Dusts easily</td>
</tr>
</tbody>
</table>
A Good Crown is Critical

• Too Flat Causes ponding
A Good Crown is Critical

• Too Steep Causes Erosion
A Good Crown is Critical

• Should be between 4% and 5%
Gap under blade indicates crown.

Blade rolled forward to feather material.

Material feathered to eliminate water ponding.
Limiting Fugitive Dust by Limiting Speed

15 MPH

30 MPH
Types of Palliatives

• Water
• Water Absorbing Products (deliquescent/hydroscopic)
 o calcium chloride, magnesium chloride, brine
• Organic Nonpetroleum Products
 o vegetable oils
 o animal fats
 o lignosulfonate
 o tall oil emulsions
• Electrochemical Products
 • enzymes
 • ionic products
 • sulfonated oils
1999 US Forest Service Guide

<table>
<thead>
<tr>
<th>Dust Palliative</th>
<th>Traffic Volumes, Average Daily Traffic</th>
<th>Surface Material</th>
<th>Climate During Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Light <100</td>
<td>Medium 100 to 250</td>
<td>Heavy >250 (1)</td>
</tr>
<tr>
<td>Calcium Chloride</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Magnesium Chloride</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Petroleum</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Lignin</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Tall Oil</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Vegetable Oils</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Electro-chemical</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Synthetic Polymers</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Clay Additives (6)</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
</tbody>
</table>
Types of Palliatives

• Water

• Water Absorbing Products (deliquescent/hydroscopic)
 - calcium chloride, magnesium chloride, brine

• Organic Nonpetroleum Products
 - vegetable oils
 - animal fats
 - lignosulfonate
 - tall oil emulsions

• Electrochemical Products
 • enzymes
 • ionic products
 • sulfonated oils
CaCl₂ Characteristics

- Most commonly used
- Requires high fines (10 - 14%)
- Ineffective when RH falls below 35%
- Can be slippery during and after a rainfall
- Has a bitter taste
- A mucus irritant
- Can impact water quality
Types of Palliatives

- Synthetic Polymer Products
 - polyvinyl acetate
 - vinyl acrylic
- Organic Petroleum Products
 - asphalt emulsions
 - dust oils
- Synthetic Fluids
 - With or without “binders”
 - Clay Additives
Synthetic Fluids

- Petroleum Products with all aromatics removed
- Meet all EPA/DEC toxicity requirements
- Naturally clear liquid but may have additives
- Non-corrosive
- Considerably more expensive than CaCl$_2$
- Liquid below -40 F
What we Have Learned so Far About Synthetic Fluid Performance

Average PM10 Concentration (mg/m³)

Fines Content (% Passing #200 Sieve)

- Summit
- Deering
- Buckland
- Kotzebue
- St Michael
- Kobuk
- White Mountain

0 0.04 0.08 0.12 0.16 0.2
4 6 8 10 12 14 16
Impact of Gradation
Synthetic Fluid Effectiveness Longevity

Less Than One Month After Application

Approximately One Years After Application

Approximately Two Years After Application
Applying Palliative in the Village
It has to be done right

- Application must be uniform
It has to be done right

- Application must be uniform
It has to be done right

• Application must be uniform
It has to be done right

- Good Equipment is Not Expensive
The system is versatile
Acknowledgements

Funding
- AKDOT&PF
- AUTC
- Federal Highway Administration
- ADEC
- Midwest Industrial Supply, Inc
- Soil Works, Inc.

The Team
- Clark Milne
- Travis Eckhoff
- Logan Little
- Donovan Camp
- Samantha Feemster
- Cody Klingman
- Wilhelm Muench
- Reggie Dallaire
- Dr. Rich Wies
Questions?

Image courtesy of Subaru of America, Inc.